3.25.96 \(\int \frac {(5-x) (3+2 x)^3}{\sqrt {2+5 x+3 x^2}} \, dx\) [2496]

3.25.96.1 Optimal result
3.25.96.2 Mathematica [A] (verified)
3.25.96.3 Rubi [A] (verified)
3.25.96.4 Maple [A] (verified)
3.25.96.5 Fricas [A] (verification not implemented)
3.25.96.6 Sympy [A] (verification not implemented)
3.25.96.7 Maxima [A] (verification not implemented)
3.25.96.8 Giac [A] (verification not implemented)
3.25.96.9 Mupad [F(-1)]

3.25.96.1 Optimal result

Integrand size = 27, antiderivative size = 112 \[ \int \frac {(5-x) (3+2 x)^3}{\sqrt {2+5 x+3 x^2}} \, dx=\frac {32}{27} (3+2 x)^2 \sqrt {2+5 x+3 x^2}-\frac {1}{12} (3+2 x)^3 \sqrt {2+5 x+3 x^2}+\frac {5}{648} (3261+1078 x) \sqrt {2+5 x+3 x^2}+\frac {19405 \text {arctanh}\left (\frac {5+6 x}{2 \sqrt {3} \sqrt {2+5 x+3 x^2}}\right )}{1296 \sqrt {3}} \]

output
19405/3888*arctanh(1/6*(5+6*x)*3^(1/2)/(3*x^2+5*x+2)^(1/2))*3^(1/2)+32/27* 
(3+2*x)^2*(3*x^2+5*x+2)^(1/2)-1/12*(3+2*x)^3*(3*x^2+5*x+2)^(1/2)+5/648*(32 
61+1078*x)*(3*x^2+5*x+2)^(1/2)
 
3.25.96.2 Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.59 \[ \int \frac {(5-x) (3+2 x)^3}{\sqrt {2+5 x+3 x^2}} \, dx=\frac {-3 \sqrt {2+5 x+3 x^2} \left (-21759-11690 x-1128 x^2+432 x^3\right )+19405 \sqrt {3} \text {arctanh}\left (\frac {\sqrt {\frac {2}{3}+\frac {5 x}{3}+x^2}}{1+x}\right )}{1944} \]

input
Integrate[((5 - x)*(3 + 2*x)^3)/Sqrt[2 + 5*x + 3*x^2],x]
 
output
(-3*Sqrt[2 + 5*x + 3*x^2]*(-21759 - 11690*x - 1128*x^2 + 432*x^3) + 19405* 
Sqrt[3]*ArcTanh[Sqrt[2/3 + (5*x)/3 + x^2]/(1 + x)])/1944
 
3.25.96.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.09, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {1236, 27, 1236, 27, 1225, 1092, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(5-x) (2 x+3)^3}{\sqrt {3 x^2+5 x+2}} \, dx\)

\(\Big \downarrow \) 1236

\(\displaystyle \frac {1}{12} \int \frac {(2 x+3)^2 (256 x+399)}{2 \sqrt {3 x^2+5 x+2}}dx-\frac {1}{12} (2 x+3)^3 \sqrt {3 x^2+5 x+2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{24} \int \frac {(2 x+3)^2 (256 x+399)}{\sqrt {3 x^2+5 x+2}}dx-\frac {1}{12} (2 x+3)^3 \sqrt {3 x^2+5 x+2}\)

\(\Big \downarrow \) 1236

\(\displaystyle \frac {1}{24} \left (\frac {1}{9} \int \frac {5 (2 x+3) (1078 x+1361)}{\sqrt {3 x^2+5 x+2}}dx+\frac {256}{9} \sqrt {3 x^2+5 x+2} (2 x+3)^2\right )-\frac {1}{12} (2 x+3)^3 \sqrt {3 x^2+5 x+2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{24} \left (\frac {5}{9} \int \frac {(2 x+3) (1078 x+1361)}{\sqrt {3 x^2+5 x+2}}dx+\frac {256}{9} \sqrt {3 x^2+5 x+2} (2 x+3)^2\right )-\frac {1}{12} (2 x+3)^3 \sqrt {3 x^2+5 x+2}\)

\(\Big \downarrow \) 1225

\(\displaystyle \frac {1}{24} \left (\frac {5}{9} \left (\frac {3881}{6} \int \frac {1}{\sqrt {3 x^2+5 x+2}}dx+\frac {1}{3} \sqrt {3 x^2+5 x+2} (1078 x+3261)\right )+\frac {256}{9} \sqrt {3 x^2+5 x+2} (2 x+3)^2\right )-\frac {1}{12} (2 x+3)^3 \sqrt {3 x^2+5 x+2}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {1}{24} \left (\frac {5}{9} \left (\frac {3881}{3} \int \frac {1}{12-\frac {(6 x+5)^2}{3 x^2+5 x+2}}d\frac {6 x+5}{\sqrt {3 x^2+5 x+2}}+\frac {1}{3} \sqrt {3 x^2+5 x+2} (1078 x+3261)\right )+\frac {256}{9} \sqrt {3 x^2+5 x+2} (2 x+3)^2\right )-\frac {1}{12} (2 x+3)^3 \sqrt {3 x^2+5 x+2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{24} \left (\frac {5}{9} \left (\frac {3881 \text {arctanh}\left (\frac {6 x+5}{2 \sqrt {3} \sqrt {3 x^2+5 x+2}}\right )}{6 \sqrt {3}}+\frac {1}{3} \sqrt {3 x^2+5 x+2} (1078 x+3261)\right )+\frac {256}{9} \sqrt {3 x^2+5 x+2} (2 x+3)^2\right )-\frac {1}{12} (2 x+3)^3 \sqrt {3 x^2+5 x+2}\)

input
Int[((5 - x)*(3 + 2*x)^3)/Sqrt[2 + 5*x + 3*x^2],x]
 
output
-1/12*((3 + 2*x)^3*Sqrt[2 + 5*x + 3*x^2]) + ((256*(3 + 2*x)^2*Sqrt[2 + 5*x 
 + 3*x^2])/9 + (5*(((3261 + 1078*x)*Sqrt[2 + 5*x + 3*x^2])/3 + (3881*ArcTa 
nh[(5 + 6*x)/(2*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2])])/(6*Sqrt[3])))/9)/24
 

3.25.96.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1225
Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*( 
x_)^2)^(p_), x_Symbol] :> Simp[(-(b*e*g*(p + 2) - c*(e*f + d*g)*(2*p + 3) - 
 2*c*e*g*(p + 1)*x))*((a + b*x + c*x^2)^(p + 1)/(2*c^2*(p + 1)*(2*p + 3))), 
 x] + Simp[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*p 
+ 3))/(2*c^2*(2*p + 3))   Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c 
, d, e, f, g, p}, x] &&  !LeQ[p, -1]
 

rule 1236
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 
1)/(c*(m + 2*p + 2))), x] + Simp[1/(c*(m + 2*p + 2))   Int[(d + e*x)^(m - 1 
)*(a + b*x + c*x^2)^p*Simp[m*(c*d*f - a*e*g) + d*(2*c*f - b*g)*(p + 1) + (m 
*(c*e*f + c*d*g - b*e*g) + e*(p + 1)*(2*c*f - b*g))*x, x], x], x] /; FreeQ[ 
{a, b, c, d, e, f, g, p}, x] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (Intege 
rQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p]) &&  !(IGtQ[m, 0] && EqQ[f, 0])
 
3.25.96.4 Maple [A] (verified)

Time = 0.38 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.54

method result size
risch \(-\frac {\left (432 x^{3}-1128 x^{2}-11690 x -21759\right ) \sqrt {3 x^{2}+5 x +2}}{648}+\frac {19405 \ln \left (\frac {\left (\frac {5}{2}+3 x \right ) \sqrt {3}}{3}+\sqrt {3 x^{2}+5 x +2}\right ) \sqrt {3}}{3888}\) \(60\)
trager \(\left (-\frac {2}{3} x^{3}+\frac {47}{27} x^{2}+\frac {5845}{324} x +\frac {7253}{216}\right ) \sqrt {3 x^{2}+5 x +2}+\frac {19405 \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) \ln \left (6 \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) x +5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right )+6 \sqrt {3 x^{2}+5 x +2}\right )}{3888}\) \(71\)
default \(\frac {19405 \ln \left (\frac {\left (\frac {5}{2}+3 x \right ) \sqrt {3}}{3}+\sqrt {3 x^{2}+5 x +2}\right ) \sqrt {3}}{3888}+\frac {7253 \sqrt {3 x^{2}+5 x +2}}{216}-\frac {2 x^{3} \sqrt {3 x^{2}+5 x +2}}{3}+\frac {47 x^{2} \sqrt {3 x^{2}+5 x +2}}{27}+\frac {5845 x \sqrt {3 x^{2}+5 x +2}}{324}\) \(94\)

input
int((5-x)*(3+2*x)^3/(3*x^2+5*x+2)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/648*(432*x^3-1128*x^2-11690*x-21759)*(3*x^2+5*x+2)^(1/2)+19405/3888*ln( 
1/3*(5/2+3*x)*3^(1/2)+(3*x^2+5*x+2)^(1/2))*3^(1/2)
 
3.25.96.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.61 \[ \int \frac {(5-x) (3+2 x)^3}{\sqrt {2+5 x+3 x^2}} \, dx=-\frac {1}{648} \, {\left (432 \, x^{3} - 1128 \, x^{2} - 11690 \, x - 21759\right )} \sqrt {3 \, x^{2} + 5 \, x + 2} + \frac {19405}{7776} \, \sqrt {3} \log \left (4 \, \sqrt {3} \sqrt {3 \, x^{2} + 5 \, x + 2} {\left (6 \, x + 5\right )} + 72 \, x^{2} + 120 \, x + 49\right ) \]

input
integrate((5-x)*(3+2*x)^3/(3*x^2+5*x+2)^(1/2),x, algorithm="fricas")
 
output
-1/648*(432*x^3 - 1128*x^2 - 11690*x - 21759)*sqrt(3*x^2 + 5*x + 2) + 1940 
5/7776*sqrt(3)*log(4*sqrt(3)*sqrt(3*x^2 + 5*x + 2)*(6*x + 5) + 72*x^2 + 12 
0*x + 49)
 
3.25.96.6 Sympy [A] (verification not implemented)

Time = 0.55 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.62 \[ \int \frac {(5-x) (3+2 x)^3}{\sqrt {2+5 x+3 x^2}} \, dx=\sqrt {3 x^{2} + 5 x + 2} \left (- \frac {2 x^{3}}{3} + \frac {47 x^{2}}{27} + \frac {5845 x}{324} + \frac {7253}{216}\right ) + \frac {19405 \sqrt {3} \log {\left (6 x + 2 \sqrt {3} \sqrt {3 x^{2} + 5 x + 2} + 5 \right )}}{3888} \]

input
integrate((5-x)*(3+2*x)**3/(3*x**2+5*x+2)**(1/2),x)
 
output
sqrt(3*x**2 + 5*x + 2)*(-2*x**3/3 + 47*x**2/27 + 5845*x/324 + 7253/216) + 
19405*sqrt(3)*log(6*x + 2*sqrt(3)*sqrt(3*x**2 + 5*x + 2) + 5)/3888
 
3.25.96.7 Maxima [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.82 \[ \int \frac {(5-x) (3+2 x)^3}{\sqrt {2+5 x+3 x^2}} \, dx=-\frac {2}{3} \, \sqrt {3 \, x^{2} + 5 \, x + 2} x^{3} + \frac {47}{27} \, \sqrt {3 \, x^{2} + 5 \, x + 2} x^{2} + \frac {5845}{324} \, \sqrt {3 \, x^{2} + 5 \, x + 2} x + \frac {19405}{3888} \, \sqrt {3} \log \left (2 \, \sqrt {3} \sqrt {3 \, x^{2} + 5 \, x + 2} + 6 \, x + 5\right ) + \frac {7253}{216} \, \sqrt {3 \, x^{2} + 5 \, x + 2} \]

input
integrate((5-x)*(3+2*x)^3/(3*x^2+5*x+2)^(1/2),x, algorithm="maxima")
 
output
-2/3*sqrt(3*x^2 + 5*x + 2)*x^3 + 47/27*sqrt(3*x^2 + 5*x + 2)*x^2 + 5845/32 
4*sqrt(3*x^2 + 5*x + 2)*x + 19405/3888*sqrt(3)*log(2*sqrt(3)*sqrt(3*x^2 + 
5*x + 2) + 6*x + 5) + 7253/216*sqrt(3*x^2 + 5*x + 2)
 
3.25.96.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.57 \[ \int \frac {(5-x) (3+2 x)^3}{\sqrt {2+5 x+3 x^2}} \, dx=-\frac {1}{648} \, {\left (2 \, {\left (12 \, {\left (18 \, x - 47\right )} x - 5845\right )} x - 21759\right )} \sqrt {3 \, x^{2} + 5 \, x + 2} - \frac {19405}{3888} \, \sqrt {3} \log \left ({\left | -2 \, \sqrt {3} {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )} - 5 \right |}\right ) \]

input
integrate((5-x)*(3+2*x)^3/(3*x^2+5*x+2)^(1/2),x, algorithm="giac")
 
output
-1/648*(2*(12*(18*x - 47)*x - 5845)*x - 21759)*sqrt(3*x^2 + 5*x + 2) - 194 
05/3888*sqrt(3)*log(abs(-2*sqrt(3)*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2)) - 5 
))
 
3.25.96.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(5-x) (3+2 x)^3}{\sqrt {2+5 x+3 x^2}} \, dx=-\int \frac {{\left (2\,x+3\right )}^3\,\left (x-5\right )}{\sqrt {3\,x^2+5\,x+2}} \,d x \]

input
int(-((2*x + 3)^3*(x - 5))/(5*x + 3*x^2 + 2)^(1/2),x)
 
output
-int(((2*x + 3)^3*(x - 5))/(5*x + 3*x^2 + 2)^(1/2), x)